Topographic Patterns of Above- and Belowground Production and Nitrogen Cycling in Alpine Tundra

نویسندگان

  • MELANY C. FISK
  • STEVEN K. SCHMIDT
  • TIMOTHY R. SEASTEDT
چکیده

Topography controls snowpack accumulation and hence growing-season length, soil water availability, and the distribution of plant communities in the Colorado Front Range alpine. Nutrient cycles in such an environment are likely to be regulated by interactions between topographically determined climate and plant species composition. We investigated variation in plant and soil components of internal N cycling across topographic gradients of dry, moist, and wet alpine tundra meadows at Niwot Ridge, Colorado. We expected that plant production and N cycling would increase from dry to wet alpine tundra meadows, but we hypothesized that variation in N turnover would span a proportionately greater range than productivity, because of feedbacks between plants and soil microbial processes that determine N availability. Plant production of foliage and roots increased over topographic sequences from 280 g·m22·yr21 in dry meadows to 600 g·m22·yr21 in wet meadows and was significantly correlated to soil moisture. Contrary to our expectation, plant N uptake for production increased to a lesser degree, from 3.9 g N·m22·yr21 in dry meadows to 6.8 g N·m22·yr21 in wet meadows. In all communities, the belowground component accounted for the majority of biomass, production, and N use for production. Allocation belowground also differed among communities, accounting for 70% of total production and 80% of N use for production in dry meadows compared to 55% of production and 65% of N use for production in moist meadows. Variation in microbial processes was highly related to soil moisture, and we found very consistent relationships among microbial respiration, gross N mineralization, and N immobilization among communities. These results indicate that the topographic soil moisture gradient is in fundamental control of the patterns of N turnover among communities and that differences in plant species do not appear to be as important.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nutrient cycling in an Alpine tundra ecosystem on Changbai Mountain, Northeast China

Nutrient availability regulates the responses of high-latitude ecosystems to climate change but nitrogen, phosphorus and sulfur biogeochemistry, especially, phosphorus and sulfur cycles, are poorly understood in Alpine tundra ecosystem. This study examines the cycling of nutrients in a 302-year-old Alpine tundra ecosystem in which litter has accumulated through compartment methods. Samples of t...

متن کامل

Potential contributions of root decomposition to the nitrogen cycle in arctic forest and tundra

Plant contributions to the nitrogen (N) cycle from decomposition are likely to be altered by vegetation shifts associated with climate change. Roots account for the majority of soil organic matter input from vegetation, but little is known about differences between vegetation types in their root contributions to nutrient cycling. Here, we examine the potential contribution of fine roots to the ...

متن کامل

13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies

Intense efforts are currently devoted to disentangling the relationships between plant carbon (C) allocation patterns and soil nitrogen (N) availability because of their consequences for growth and more generally for C sequestration. In cold ecosystems, only a few studies have addressed whole-plant C and/or N allocation along natural elevational or topographical gradients. (12)C/(13)C and (14)N...

متن کامل

Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching in two different vegetation communities in alpine tundra

Deyeuxia angustifolia (Komarov) Y. L Chang is an herb species originating from the birch forests in the Changbai Mountain. Recently, this species has been found encroaching into large areas in the western slopes of the alpine tundra in the Changbai Mountain, threatening the tundra ecosystem. In this study, we systematically assessed the response of the rhizosphere soil microbial to D. angustifo...

متن کامل

Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal forest and tundra ecosystems

Boreal forest and tundra are the major ecosystems in the northern high latitudes in which a large amount of carbon is stored. These ecosystems are nitrogen-limited due to slow mineralization rate of the soil organic nitrogen. Recently, abundant field studies have found that organic nitrogen is another important nitrogen supply for boreal forest and tundra ecosystems. In this study, we incorpora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999